Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome.
نویسندگان
چکیده
Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes.
منابع مشابه
Whole-genome sequencing suggests mechanisms for 22q11.2 deletion-associated Parkinson’s disease
OBJECTIVES To investigate disease risk mechanisms of early-onset Parkinson's disease (PD) associated with the recurrent 22q11.2 deletion, a genetic risk factor for early-onset PD. METHODS In a proof-of-principle study, we used whole-genome sequencing (WGS) to investigate sequence variants in nine adults with 22q11.2DS, three with neuropathologically confirmed early-onset PD and six without PD...
متن کاملCopy number variations and risk for schizophrenia in 22q11.2 deletion syndrome
22q11.2 Deletion Syndrome (22q11.2DS) is a common microdeletion syndrome with congenital and late-onset features. Testing for the genomic content of copy number variations (CNVs) may help elucidate the 22q11.2 deletion mechanism and the variable clinical expression of the syndrome including the high (25%) risk for schizophrenia. We used genome-wide microarrays to assess CNV content and the pare...
متن کامل22q11.2 deletion carriers and schizophrenia-associated novel variants.
The penetrance of schizophrenia risk in carriers of the 22q11.2 deletion is high but incomplete, suggesting the possibility of additional genetic defects. We performed whole exome sequencing on two individuals with 22q11.2 deletion, one with schizophrenia and the other who was psychosis-free. The results revealed novel genetic variants related to neuronal function exclusively in the person with...
متن کاملMicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome
The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs over...
متن کاملmiRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome
In humans, the most common genomic disorder is a hemizygous deletion of a 1.5-3 Mb region of chromosome 22q11.2. The resultant 22q11.2 deletion syndrome (22q11.2DS) can affect multiple organ systems, and most notably includes cardiac, craniofacial, and neurodevelopmental defects. Individuals with 22q11.2DS have a 20-25-fold risk of developing schizophrenia compared to individuals from the gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- G3
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2015